Apart from learning to read, the development of proficiency in mathematics is arguably the next most important and essential academic skill that a child must gain. Regardless of one’s vocation, knowledge of arithmetic and skill in using mathematics are fundamental requirements of everyday life. The National Council of Teachers of Mathematics (NCTM) states that “those who understand and can do mathematics will have significantly enhanced opportunities and options for shaping their futures. Mathematical competence opens doors to productive futures” (2003, p. 5). Therefore, it is vital that a school has a robust, comprehensive program of math education.

What constitutes a quality math program? What are the elements in math education that will produce student proficiency in mathematics? The answers to these questions have been a point of controversy for many years. In fact, the literature describes many areas important to the development of student proficiency in math, from affective traits of both students and teachers, to teacher qualifications, to the nature and content of the written curriculum.

One of the most fundamental aspects of mathematics education centers around the basic instructional approach used to teach mathematics. It is an area surrounded with controversy. The controversy specifically centers on whether the instructional approach should be more constructivist with a focus on a student’s gaining a conceptual understanding of mathematics or more teacher-directed emphasizing a student’s learning mathematics facts and learning to correctly apply mathematical procedures through the use of various algorithms and other step-by-step procedures. Conceptual or procedural – which approach is more effective in producing student proficiency in mathematics? Both approaches have their defenders and critics, each of whom refer to research in support of their respective positions.

PROCEDURAL APPROACH

Use of the procedural approach is the traditional way that math has been taught. The procedural approach in mathematics education may be defined as teacher-led, direct instruction of rules or procedures for solving problems. Waite-Stupiansky & Stupiansky note that a procedural-based instructional approach involves the student’s learning algorithms and formulas and how to apply them to solve mathematical problems. Rote memorization, drill, and practice are methodologies often utilized by teachers in a procedural-based mathematics instructional program. Procedural-based mathematics instruction emphasizes the acquisition of basic skills (Star, 2002) and precision, accuracy, and fluency in their execution. The fundamental premise is that students must know specific mathematics content before they can acquire higher skills or truly gain conceptual understanding of mathematics (Quirk, 2000).

This instructional approach remains the predominant approach today to teaching math, especially in elementary grades. A Beka Books is probably the most widely-used mathematics curriculum produced by Christian publishers that utilizes a procedural-based instructional approach to mathematics. Typically, students who have been taught math from a procedural approach tend to have higher scores on the math sections of achievement tests in the areas related to computation than those related to concepts/reasoning.

CONCEPTUAL APPROACH

On the opposite end of the instructional spectrum from the procedural approach to teaching mathematics is the conceptual approach. Where procedural-based instruction provides mathematics facts, algorithms, and formulas that can be used to solve mathematical problems, conceptual-based instruction seeks to...
provide the reasons why these algorithms and formulas work. The emphasis is on the students learning important concepts of mathematical connections, relationships, and applications. Rather emphasizing direct-instruction, memorization, drill, and practice, conceptual-based mathematics instruction focuses on student discovery, use of manipulatives, problem-solving, and use of technology as teaching methodologies. The fundamental premise is that students must have a conceptual understanding of mathematics as the scaffold upon which they build their procedural knowledge. Otherwise, they are inflexible in their use of mathematics and unable to effectively transfer their acquired procedural knowledge to new and unique problems and situations.

The rise of the conceptual approach to mathematics instruction is consistent with a constructivist approach to education. The use of the conceptual approach is very prominent in the Principles and Standards published by the NCTM (2003). Among mathematics curriculum produced by Christian publishers that utilizes a conceptual-based instructional approach to mathematics, Bob Jones Press is probably the most widely used. Typically, students who have been taught math from a conceptual approach tend to have higher scores on the math sections of achievement tests in the areas related to concepts/reasoning than those related to computation.

LINKING PROCEDURAL AND CONCEPTUAL APPROACHES

The procedural vs. conceptual controversy with regard to mathematics instruction has continued to rage, becoming so rancorous at times that it has been referred to at various times as the “Math Wars.” However, in the midst of the controversy, a third, inexorably logical, option has begun to gather steam – incorporating both procedural and conceptual approaches into mathematics education. The literature indicates that both the acquisition of procedural skill and conceptual knowledge are important to math competency.

As far back as 1986, Hiebert and Wearne (1986) found that mathematical competence is attainable only if one is making connections between conceptual and procedural knowledge. Blöte and Van der Burg (2001) found that understanding math concepts enhanced the acquisition of procedural skills and that the acquisition of procedural skills, in turn, enhanced conceptual understanding of math. In addition, Star (2002) contended that the most appropriate framework for math education should be built around conceptual knowledge about procedures. Wu (1999) also asserted that in mathematics, skills and understanding are completely intertwined, and that precision and fluency in the execution of the skills are necessary to convey conceptual understanding. Even Quirk (2000), who is an avid proponent of procedural-based instruction, nonetheless contended that the problem in mathematics education is a failure to teach math procedurally conveying conceptual understanding inherent in utilizing those procedures.

The implication for schools and educators is clear. Mathematics education programs in schools should incorporate instruction in both procedural skill and conceptual understanding. Obviously, students need both to gain mathematical competency. Almost all mathematics textbooks at the K-12 level are based in one approach or the other. Therefore, teachers cannot rely solely upon the adopted texts to provide the totality of the instructional content needed in math classes. They must be diligent to supplement material in the texts to provide additional instruction in the acquisition of procedural skill or conceptual understanding as needed to compensate for that which is lacking within their texts.

REFERENCES

CHANGING HOW WE VIEW MATH ABILITY
Mary Lou Miller, Ed.D. Associate Professor, ORU Graduate School of Education

As a mathematics teacher, I have had numerous opportunities to dialogue with students regarding their perceived abilities to tackle a difficult mathematical concept. Though not all students appear intimidated by daunting algebra word problems or geometric proofs, the sheer volume of comments posed by students regarding their fear of mathematics has been enough to cause me to give pause. Meetings with parents have further increased my curiosity regarding this mindset. Statements such as “Well, my wife and I were never good at math, so it doesn’t surprise me that ____ is struggling” are quite common. Another recurring comment (disappointing, I might add) has been, “We were told by a previous teacher that ____ just doesn’t have a mathematical mind.” Many of these students who struggle with mathematics excel in other subject areas, and I have never believed that people who are more mathematically inclined have “super” brains. Indeed, mathematics is often referred to as a subject that requires a certain “innate ability” or “brain power” to grasp its concepts. On the contrary, I have always informally held the view that learning mathematics is more a matter of practicing and honing a skill. However, I never really performed any experiments to test this theory or ventured to find research to verify my hunch.

In preparing for a recent presentation regarding the teaching of mathematics, I came across a body of research that refutes the notion of this predetermined “innate ability”. Results from this research suggest that it is not so much about the brain power of the student, but rather the belief of that student in whether he or she has the ability to increase his or her intelligence. As I read through the studies, it was exciting to find that others shared my view. Reading actual research about growing our intelligence was very exciting!

MATHEMATICS ABILITY AND INTELLIGENCE

The National Mathematics Advisory panel, formed in 2006, was established to address concerns regarding mathematics education. In 2008 the panel published a report about the status of mathematics learning in America. The panel stated that it is not just the way mathematics is being taught, but also the nation’s attitudes about math. Children who often hear parents say they “weren’t good at math either,” assume they do not have mathematical ability. The panel further cited research indicating that students need to be taught about the importance and benefits of practicing mathematics (The Washington Post, 2008).

Dweck and Sorich (1999) proposed that students generally hold one of two different views regarding intelligence. Some students view intelligence as something fixed and unchangeable (entity theory), while other students view intelligence as malleable (incremental theory). These views particularly affect how students respond to situations of academic challenges, such as a difficult math assignment. Dweck, Blackwell, and Trzesniewski (2007) later applied this model in a study conducted to determine whether belief about the nature of intelligence is related to mathematics achievement at the junior high level, which is a critical time in a student’s academic life. At the beginning of the school year, seventh grade students at a junior high school completed a questionnaire which determined their view regarding intelligence. The students were then tracked over a two-year period. The researchers found that students who held the belief of malleable intelligence increased in their levels of mathematics achievement over the two-year period at the school, while the levels of mathematics achievement for students who held the view of fixed intelligence decreased.

A second part of Dweck’s (2007) study involved teaching students about malleable intelligence theory. The researchers sought to determine whether teaching students to think of their intelligence as malleable leads them to be more motivated, resulting in higher academic achievement in mathematics. At a different junior high school, a sample of seventh graders was divided into two groups; one group was taught about malleable intelligence theory, while the other group conducted class as usual. The results indicated that those students who were taught about malleable intelligence theory exhibited increased motivation in the classroom, and reversed the trend of decreasing mathematics achievement which is common at the junior high level. In fact, their achievement levels significantly increased.

A word of caution is appropriate at this point. It is important to recognize that believing intelligence to be malleable does not imply that everyone has exactly the same potential in every
subject area, or will learn everything with equal ease. Rather, it means that for any given individual, intellectual ability can always be further developed. And for me, this aligns perfectly with God’s word: “The body is a unit, though it is made up of many parts; and though all its parts are many, they form one body. So it is with Christ” (I Corinthians 12:12, New International Version). We should not expect our students or ourselves to excel in all subject areas in the same way, because God has given each of us special abilities as part of the body of Christ. However, I do believe that God expects us to grow.

The results of this study really spoke to me; if students do not believe they can improve their mathematical ability, or that their ability is fixed and unchangeable, then they probably will not see much use in practicing to perfect their skills. On the other hand, if students believe that they can increase their knowledge levels with practice, then they will likely be more inclined to work hard at practicing skill acquisition.

IMPLICATIONS FOR BEST PRACTICES

The results of this research raise some important questions for us as teachers. What can we do as teachers to motivate our students and change their attitudes about how they approach challenging problems in mathematics? Acknowledging that what we do as teachers provides only one small piece of the complex puzzle in the journey to self-efficacy for our students, we still have a responsibility to provide avenues to enable them to grow and flourish.

Ruffins (2007) provides a few suggestions in helping students to overcome the mindset of fear when approaching challenging mathematics problems:

1. Provide role models in the form of a highly qualified woman or minority instructor, and also introduce historical figures who were mathematicians or scientists
2. Get a group of students to talk about a math problem before using numbers, mathematical symbols or equations. Show that even wrong answers can be useful in helping other people to look at the problem
3. Find a way to visualize a math problem in more concrete terms, perhaps using real life questions of size, distance, time or money
4. Discuss the quantitative problem in terms of ordinary words or pictures
5. Translate the problem into the formal English of mathematics
6. Translate the formal description of the problem into mathematical terms and only then try to solve the mathematical equation
7. Model the techniques and strategies employed to solve a problem
8. Leave time for guided practice so that students will have a written plan in place when they are working on their own. (p. 19)

By reminding students that they can grow and increase, we embrace the message of God’s word regarding how we are made: “For God has not given us a spirit of fear, but of power and of love and of a sound mind” (I Timothy 1:7, New King James Version).

ABOUT THE AUTHOR

Mary Lou Miller is in her 13th year of teaching at Oral Roberts University in Tulsa, OK. She has her BS in Math Education for OSU, her MS in Applied Mathematics from Univ. of Tulsa, and her Ed.D. in Math Education form OSU. She started teaching as a mathematics instructor in the computer science/mathematics department in 1996. She is in now in her her 7th year teaching in the Graduate School of Education. She currently teaches Educational Research Design, Research Statistics, and Quantitative Research Methods.

REFERENCES

FOCUS ON
THE PROCESS
Lisa Weis, NBCT, Assistant Professor, School of Education, Oral Roberts University

AND WITH A FOCUS ON THE PROCESS IT CAN EQUAL SO MUCH MORE!

Basic computational skills and number sense are essential in school tasks and real-life applications. The need to recall basic facts quickly and accurately are viewed as foundational to mathematical abilities throughout the school years. However, these facts are not an end unto themselves, but rather stepping stones that can promote higher-level thinking, advanced communications, and mathematical reasoning. The Principles and Standards for School Mathematics published by the National Council of Teachers of Mathematics (NCTM) provides the framework for school mathematics across grade levels, pre-kindergarten through twelfth. The standards represent five content areas (Figure 1) and five processes (Figure 2) that span the grade levels to provide for a comprehensive system supportive of what learners should know and be able to do in mathematics. These standards move through levels of increasing complexity as learners are provided time for investigations, authentic experiences, and targeted direct instruction. With the knowledge that learners do not develop understandings of mathematical concepts through rote procedures, isolated skills, and arbitrary tasks; the processes support a comprehensive, relevant, and meaningful application of the mathematical content knowledge necessary to navigate school tasks and support real-world applications. Certainly elementary school teachers are proficient at detailing and instructing students in the five content areas of mathematics. They know how to scaffold learning by providing supervised and independent practice with the content allowing for learners to demonstrate their proficiency and readiness for the next level. Yet, too often hampered by time and a focus on accountability, content mastery becomes the measure of mathematical ability at the cost of learning and applying process strategies.

CONTENT STANDARDS

Number and Operations
- understand numbers, ways of representing numbers, relationships among numbers, and number systems
- understand meanings of operations and how they relate to one another
- compute fluently and make reasonable estimates

Algebra
- understand patterns, relations, and functions
- represent and analyze mathematical situations and structures using algebraic symbols
- use mathematical models to represent and understand quantitative relationships
- analyze change in various contexts

Geometry
- analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships
- specify locations and describe spatial relationships using coordinate geometry and other representational systems
- apply transformations and use symmetry to analyze mathematical situations
- use visualization, spatial reasoning, and geometric modeling to solve problems

Measurement
- understand measurable attributes of objects and the units, systems, and processes of measurement
- apply appropriate techniques, tools, and formulas to determine measurements

Data Analysis and Probability
- formulate questions that can be addressed with data and collect, organize, and display relevant data to answer them
- select and use appropriate statistical methods to analyze data
- develop and evaluate inferences and predictions that are based on data
- understand and apply basic concepts of probability

PROCESSES

The five processes outlined by the NCTM (Figure 2) represent the strategies that aide in moving beyond the mechanics of mathematics to assisting learners in developing an understanding and ownership of mathematical knowledge. Problem-solving, reasoning, connections, communication, and representation taught through direct instruction and modeling, provide the tools learners need to seek necessary information, rationalize their thinking, make connections among content, and effectively communicate their learning verbally and through concrete representations. As educators we cannot be satisfied by helping learners become proficient in mathematical content at their cur-

WE MUST MOVE LEARNERS BEYOND BASIC SKILL DEVELOPMENT AND WORK TO PRODUCE CRITICAL THINKERS, PROBLEM-SOLVERS, AND LEARNERS WHO CAN COMMUNICATE EFFECTIVELY.
Familiarizing yourself with the five processes is a key aspect of promoting deeper learning and engaging students in meaningful discourse. These processes—building awareness, instruction, engagement, and support—should be integrated into your classroom practice to foster a dynamic and inclusive learning environment. To begin this process, you might consider the following scenario as a possible opportunity for problem-solving:

You are a third grade teacher in a classroom where pencil-sharpening is always an issue. This is a problem that is all too common in classrooms and takes time away from focused instruction. The mathematical content that can connect to such a problem relates to (1) the time that elapses each time you have to wait for the pencils to be sharpened, (2) it takes 40 seconds for a pencil to be sharpened using the manual sharpener, (3) the electric sharpener can sharpen pencils much faster but after working for 3 minutes it overheats and takes 5 minutes to cool-down before it can begin sharpening again, and (4) over half of the pencils in the class at any given time are dull. Certainly, an opportunity for problem-solving has just arrived.

The content, couched in an opportunity to examine problem-solving, includes (1) measurement: calculating elapsed time; (2) algebra: \(40n = x\) determining the length of time necessary to sharpen all of the dull pencils in the class; (3) data analysis: graphing the number of pencils that can be sharpened in 10 minutes manually and electronically to evaluate the more effective sharpening method; and (4) number and operations: calculate fractions to determine an acceptable number of dull pencils in the classroom at any given time. Having an awareness of the processes and being open for application will assist you in identifying opportunities and provide you experiences to be intentional in your teaching related to the processes. Math Curse is a whimsical, free-flowing children’s book written by Jon Scieszka that provides an excellent starting point for building awareness with you and your students.

INSTRUCTION & ENGAGEMENT

Direct instruction is an essential component in helping learners become consciously aware of their learning. Students must understand the objectives of the experience, the steps in which they will engage in order to accomplish those objectives, and how their performance will be measured to identify to what degree they have met the objectives. They need to understand that the purpose of their pursuit is relevant to their lives and has meaning; that it is worth doing. Direct instruction can aide in explaining the objectives and the task to the students when paired with intentional dialogue that engages students in viewing, listening, and questioning. For example, problem-solving is a process that requires the recognition that a problem exists, the identification of the various elements in play, and a desired resolution. To engage students in problem-solving, educators must teach students how to identify the components of the problem and encourage them to create heuristic plans for discovering resolutions. The goal of problem-solving is learning and becoming confident in the process of seeking answers rather than the product, or the answers themselves. Consider the earlier scenario related to the third-grade classroom with the pencil sharpening problem. To provide instruction and engagement with this experience the teacher would (1) lead the class with the statement that she has noticed a problem: pencil-sharpening is taking too much class time that could better be used for instruction; (2) solicit thoughts from the students as to what makes this a problem; (3) determine the evidence that exists that it is taking too much time; and (4) possible plans for resolution. Instruction and engagement would begin specifically with step 3 in which the teacher would prompt students to recall their background experiences related to mathematical content that would aide in collecting such evidence. Having had previous experiences with elapsed time, algebra, data analysis, and the like through isolated, discrete skill instruction may prove to be challenging for students to make instantaneous connections that would support collecting evidence and therefore would require more prompting from the teacher than will be needed as students become more familiar with these experiences and are supported in making content and process connections.

SUPPORT

The support necessary to allow for student awareness and application with mathematical processes must be ongoing, assistive, and patient. It can be much more challenging for teachers than for students to begin looking at mathematical knowledge as a process far exceeding mere facts-based learning. Opportunities to develop plans, communicate understandings, rationalize ideas, represent thinking in a concrete manner, and make connections to previous learning must be ever present in the classroom. To promote critical thinking, we must challenge ourselves as educators and our students as learners to move beyond the acceptance of right or wrong answers to seek understandings and explanations of the processes that led to such conclusions. By infusing processes in mathematical content learning, students begin to understand the reasons for their thinking and can assume an active role in their pursuit of knowledge and skills. If we listen to Galileo we know that “You cannot teach a person anything; you can only help him find it within himself.” Instructioning students in mathematical processes supports learners discovering mathematical learning for themselves.

CONCLUSION

The mathematical content and processes listed by the NCTM provide a sturdy foundation upon which mathematical instruction should be based. Although equally import, time and accountability factors have placed an unacceptable emphasis on content knowledge at the expense of systematic, supportive instruction of mathematical processes. Without a doubt, basic numeracy skills, fact recall, measurement abilities, and data analysis are necessary and worthy goals for any math program; however, they cannot and should not stand a part from processes. For if we recognize that the calculation of two addends equals one sum, we would certainly be able to move beyond that recognition to a higher-level of understanding had such instruction been embedded equally in mathematical content and processes.

ABOUT THE AUTHOR

Lisa has worked in education for 17 years; 10 in elementary and 7 in higher education. She is a National Board Certified Teacher in the area of Early Childhood Generalist, has a BS degree in Human Environmental Sciences and a MS degree in Curriculum and Instruction. She will complete her Doctor of Philosophy degree in Educational Psychology this December.

REFERENCES

ON THE SHELF: Book Review

Dr. Jerry Eshleman

Title:
Curriculum 21: Essential Education for a Changing World

Edited By:
Heidi Hayes Jacobs

This book represents a logical extension of the revolution started in 2006 with Thomas Friedman’s text, The World Is Flat. This book, as Friedman’s did, causes one to broaden the scope of reflection. Instead of merely considering curriculum choices and student-centered instructional techniques, one must also expand the search light of reflection to include a global perspective on society as well as the integration of technology. Her central purpose for writing the text is to encourage all educators to review one’s way of doing school and then be willing to completely re-purpose it to better match the directions the world is taking. Her concern is that many of us may still be running schools that look very much the way they did in the 1980’s.

In her book, Jacobs writes the first, four chapters to provide an excellent overview. Then, for the next nine chapters she utilizes an excellent core of guest writers who are quite familiar with the topics. Essentially the breadth of the book addresses what content should each discipline still contain, interdisciplinary bridges between content areas, teaching the content with a career emphasis, new linkages between school and world, enhanced methods of assessment which includes an excellent section on electronic portfolios, media literacy and research skills and much, much more.

Overall, I found the text an easy and extremely practical read. Efforts taken to look into the future to predict what priorities educators and education should have are common. Often however, the problem is identifying where should one begin and where does one end in searching for these priorities. What is the scope of the number of the priorities to be thoughtfully and prayerfully considered? Once identified, what are the inherent characteristics of priority? Curriculum 21 is an excellent compendium of issues today’s educators ought to consider when making strategic plans for the future. This text provides a survey-level analysis of the most significant issues. When finished, one has an excellent list of catalyzing agents they can immediately begin to analyze. Once that process is completed, the instructional leader will have legitimate set of executables to begin the process of purposeful change for meaningful success.

Jerry Eshleman received his Master of Arts in Education from Oral Roberts University and obtained his Doctorate in Educational Psychology from Oklahoma State University. Dr. Eshleman was a faculty member at ORU for over 9 years in the School of Education. He currently resides in San Antonio, TX and is the Superintendent of Cornerstone Christian Schools.

WE WOULD LIKE TO HIGHLIGHT OUR SCHOOLS BY CELEBRATING YOUR ACHIEVEMENTS AND SHARING THEM WITH OUR OTHER SCHOOLS THROUGH THIS NEWSLETTER.

If your school has celebrated an achievement, whether in sports, academics, community service, or some other area, please send us the information along with pictures so we can celebrate with you and share that accomplishment with our other schools. Please submit any articles and pictures to: Janna Pyle at japyle@oru.edu.
CHSA UPDATE: Meadowbrook Academy, Ocala, Florida

Meadowbrook Academy participates in the ORUEF Christian Honor Student Association (CHSA) each year. As a member school, we seek to inspire academic achievement within each of our students. We encourage each member to aspire to a life of purpose and service by being leaders on and off campus.

The Christian Honor Student Association recognizes students’ achievements in class and in the community. Each year current members are reviewed to ensure their membership requirements have been fulfilled and they are in good standing with their academics and conduct. We then conduct a new member eligibility search for those students in the 9th, 10th, 11th, and 12th grades who are potential candidates for membership consideration. Potential candidates are selected on the basis of four criteria: Character, Leadership, Scholarship, and Service.

Once candidates have been approved by our CHSA Review Board we invite them to become a member and to participate in the annual induction ceremony. This ceremony is a time where family, friends, school staff, and students come together to acknowledge the achievements of each of these students. The new inductees will receive a pin and CHSA membership certificate and all returning members will receive a CHSA certificate of membership. Each member will then stand to recite the Christian Honor Student Pledge in unison. Each member pledges to reflect the glory of the Lord in their character, leadership, scholarship, and service. Immediately following the induction ceremony we host a brunch for each member and their family.

Meadowbrook Academy elects to participate in the CHSA's Annual Theme Project each year. The theme projects are designed to reflect the interests, abilities, and gifts of each member. It is how we give back to our school, church, and community. We desire to share our Lord and Savior with our community through our acts of service. We get involved with local charities such as Muscular Dystrophy, Pennies for Leukemia, American Heart Association, Special Olympics, Habitat for Humanity, and Compassionate Alliance. We try to instill within each CHSA member that the joy truly is in serving.

Meadowbrook Academy considers our involvement in the ORUEF/CHSA not only an honor but a duty as well. The requirements of this organization go hand in hand with our schools mission statement which is as follows: It is the mission of Meadowbrook Academy to inspire achievement, identify purpose, instill character, and enrich the faith of every student through a Christ-centered, Spirit-led education. We are committed to Christian education and believe that we are called to train up vessels of honor for the master’s use. - submitted by Tina Stelogeannis, Principal
Dr. Amen will be speaking on “Creating Brain-Healthy Schools” and discussing his latest findings on brain-based learning including the issues of ADD/ADHD and other learning challenges. He is at the forefront of applying brain science to improve everyday life.

Along with Dr. Amen speaking in the plenary sessions, a number of breakout workshops sessions on a variety of topics of interest to Christian school teachers and administrators will also be held during the conference. As with the 2009 conference, this event promises to be a valuable time of professional development and encouragement for Christian school teachers, administrators, and other Christian educators.

SCHEDULE OF EVENTS

<table>
<thead>
<tr>
<th>Wednesday, June 30</th>
<th>Thursday, July 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 am - 8:30 am</td>
<td>7:30 am - 8:45 am</td>
</tr>
<tr>
<td>Registration</td>
<td>Administrator’s Breakfast</td>
</tr>
<tr>
<td>8:30 am - 11:30 am</td>
<td>8:30 am - 9:00 am</td>
</tr>
<tr>
<td>General Session: Dr. Daniel G. Amen</td>
<td>Vendor’s Exhibit</td>
</tr>
<tr>
<td>11:30 am - 1:00 pm</td>
<td>9:30 am - 10:15 am</td>
</tr>
<tr>
<td>Lunch (on your own)</td>
<td>General Session: Dr. Daniel Amen</td>
</tr>
<tr>
<td>1:00 pm - 2:00 pm</td>
<td>10:15 am - 10:45 am</td>
</tr>
<tr>
<td>Workshops</td>
<td>Break/Vendor Exhibits</td>
</tr>
<tr>
<td>2:00 pm - 2:30 pm</td>
<td>10:45 am - 11:30 am</td>
</tr>
<tr>
<td>Break/Vendor Exhibits</td>
<td>General Session: Dr. Daniel Amen</td>
</tr>
<tr>
<td>2:30 pm - 3:30 pm</td>
<td></td>
</tr>
<tr>
<td>Workshops</td>
<td></td>
</tr>
</tbody>
</table>

ICAA ACCREDITATION HEARINGS & BUSINESS MEETING

JUNE 27 – JUNE 29, 2010

Sunday, June 27, 2010
2:00 p.m. – 5:30 p.m. Joint ORUEF/ICAA Board Meeting
5:30 p.m. Joint Board Dinner

Monday, June 28, 2010
8:00 a.m. – 9:00 a.m. Review Committee Chair Meeting
9:00 a.m. – 12:00 p.m. ICAA Review of Schools
12:00 p.m. – 2:00 p.m. Lunch/ICAA Commission Meeting
2:30 p.m. – 4:00 p.m. ICAA Chairman Meeting
3:00 p.m. – 5:00 p.m. Accreditation status posted

Tuesday, June 29, 2010
8:00 a.m. – 9:00 a.m. Appeals Heard/New School Introductions
9:00 a.m. – 12:00 p.m. ICAA Business Meeting
12:00 p.m. – 1:30 p.m. LUNCH (International School Lunch
2:00 p.m. – 4:00 p.m. BENEVON Workshop:

Thursday, July 1, 2010
12:30 p.m. – 3:00 p.m. ORUEF/ICAA Awards Banquet

BENEVON WORKSHOP
Terry Axelrod, founder and CEO of Benevon, will be conducting a workshop entitled, “CREATING SUSTAINABLE FUNDING IN CHALLENGING ECONOMIC TIMES” for all schools on Tuesday, June 29, from 2-4 p.m. in the Training Center on the 6th floor of the Cityplex Towers.

Benevon trains and coaches nonprofit organizations to implement a mission-based system for raising sustainable funding from individual donors. In this session, you will learn:
• How to implement mission-focused, permission-based fundraising.
• How to make your organization more visible in your community.
• How to identify and personally cultivate individual donors who are passionate about your mission.

PLAN NOW TO ATTEND!!
2010 CALENDAR

FEBRUARY 12-13 (FRIDAY - SATURDAY)
International Christian School Conference
Bogota, Colombia

MARCH 1-2 (MONDAY - TUESDAY)
International Christian School Conference
Benin City, Nigeria

MARCH 4-5 (THURSDAY - FRIDAY)
International Christian School Conference
Tema, Ghana

APRIL 8-9 (THURSDAY - FRIDAY)
International Christian School Conference
Mexico City, Mexico

JUNE 27 (SUNDAY)
ORUEF/ICAA Joint Board of Directors Meeting
Tulsa, Oklahoma

JUNE 28-29 (MONDAY - TUESDAY)
ICAA Hearings & Business Meeting, CityPlex Towers
Tulsa, Oklahoma

2011 CALENDAR

JANUARY 14 (FRIDAY)
ORUEF Regional Christian School Conference,
Calvary Christian Academy
Fort Worth, Texas

FEBRUARY 10 - 11 (THURSDAY - FRIDAY)
ORUEF Latin America Christian School Conference

FEBRUARY 28—MARCH 1 (MONDAY - TUESDAY)
ORUEF International Christian School Conferences
Benin City, Nigeria/Tema, Ghana

APRIL 28-29 (THURSDAY - FRIDAY)
ORUEF Mexico Christian School Conference
Monterrey, Mexico

JUNE 26 (SUNDAY)
ORUEF/ICAA Joint Board of Directors Meeting
Tulsa, Oklahoma

JUNE 30 - JULY 1 (WEDNESDAY - THURSDAY)
ORUEF International Christian School Conference,
Christ’s Chapel
Tulsa, Oklahoma

JULY 1 (THURSDAY)
ORUEF/ICAA Banquet, CityPlex Towers
Tulsa, Oklahoma

SEPTEMBER 13-14 (MONDAY - TUESDAY)
ICAA Standards Training, ICAA Offices
Tulsa, Oklahoma

NOVEMBER 4-5 (THURSDAY - FRIDAY)
ORUEF Christian School Conference
Southeastern Region, USA

DECEMBER 3 (FRIDAY)
ORUEF Christian School Conference,
Albuquerque Hilton
Albuquerque, NM